p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.453C23, C23.688C24, C22.3512- (1+4), C22.4612+ (1+4), C22⋊C4⋊8Q8, C23.44(C2×Q8), C2.62(D4⋊3Q8), C23⋊Q8.29C2, (C22×C4).215C23, (C23×C4).497C22, (C2×C42).715C22, C23.Q8.41C2, C23.7Q8.76C2, C23.8Q8.65C2, C22.160(C22×Q8), (C22×Q8).220C22, C23.78C23⋊61C2, C24.C22.77C2, C23.67C23⋊102C2, C23.63C23⋊187C2, C23.65C23⋊155C2, C23.83C23⋊122C2, C23.81C23⋊128C2, C2.105(C22.32C24), C2.C42.392C22, C2.71(C22.50C24), C2.41(C23.41C23), C2.42(C22.56C24), (C2×C4).84(C2×Q8), (C2×C4).472(C4○D4), (C2×C4⋊C4).498C22, C22.549(C2×C4○D4), (C2×C22⋊C4).324C22, SmallGroup(128,1520)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 404 in 208 conjugacy classes, 96 normal (82 characteristic)
C1, C2 [×7], C2 [×2], C4 [×18], C22 [×7], C22 [×10], C2×C4 [×8], C2×C4 [×42], Q8 [×4], C23, C23 [×2], C23 [×6], C42 [×2], C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×14], C22×C4 [×14], C22×C4 [×4], C2×Q8 [×4], C24, C2.C42 [×14], C2×C42 [×2], C2×C22⋊C4 [×6], C2×C4⋊C4 [×11], C23×C4, C22×Q8, C23.7Q8, C23.8Q8 [×2], C23.63C23, C24.C22 [×2], C23.65C23 [×2], C23.67C23, C23⋊Q8, C23.78C23, C23.Q8, C23.81C23, C23.83C23 [×2], C24.453C23
Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×4], C24, C22×Q8, C2×C4○D4 [×2], 2+ (1+4) [×3], 2- (1+4), C22.32C24 [×2], C23.41C23, D4⋊3Q8 [×2], C22.50C24, C22.56C24, C24.453C23
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=bcd, f2=g2=cb=bc, ab=ba, eae-1=ac=ca, faf-1=ad=da, ag=ga, bd=db, fef-1=be=eb, gfg-1=bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, geg-1=bce >
(2 9)(4 11)(5 21)(6 40)(7 23)(8 38)(14 32)(16 30)(17 51)(18 61)(19 49)(20 63)(22 25)(24 27)(26 37)(28 39)(33 62)(34 50)(35 64)(36 52)(41 54)(43 56)(46 57)(48 59)
(1 55)(2 56)(3 53)(4 54)(5 37)(6 38)(7 39)(8 40)(9 43)(10 44)(11 41)(12 42)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 26)(22 27)(23 28)(24 25)(29 58)(30 59)(31 60)(32 57)(33 64)(34 61)(35 62)(36 63)
(1 12)(2 9)(3 10)(4 11)(5 28)(6 25)(7 26)(8 27)(13 31)(14 32)(15 29)(16 30)(17 35)(18 36)(19 33)(20 34)(21 39)(22 40)(23 37)(24 38)(41 54)(42 55)(43 56)(44 53)(45 60)(46 57)(47 58)(48 59)(49 62)(50 63)(51 64)(52 61)
(1 44)(2 41)(3 42)(4 43)(5 21)(6 22)(7 23)(8 24)(9 54)(10 55)(11 56)(12 53)(13 58)(14 59)(15 60)(16 57)(17 64)(18 61)(19 62)(20 63)(25 40)(26 37)(27 38)(28 39)(29 45)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 50 42 36)(2 19 43 64)(3 52 44 34)(4 17 41 62)(5 58 23 15)(6 30 24 48)(7 60 21 13)(8 32 22 46)(9 33 56 51)(10 61 53 20)(11 35 54 49)(12 63 55 18)(14 40 57 27)(16 38 59 25)(26 45 39 31)(28 47 37 29)
(1 45 42 31)(2 32 43 46)(3 47 44 29)(4 30 41 48)(5 34 23 52)(6 49 24 35)(7 36 21 50)(8 51 22 33)(9 14 56 57)(10 58 53 15)(11 16 54 59)(12 60 55 13)(17 25 62 38)(18 39 63 26)(19 27 64 40)(20 37 61 28)
G:=sub<Sym(64)| (2,9)(4,11)(5,21)(6,40)(7,23)(8,38)(14,32)(16,30)(17,51)(18,61)(19,49)(20,63)(22,25)(24,27)(26,37)(28,39)(33,62)(34,50)(35,64)(36,52)(41,54)(43,56)(46,57)(48,59), (1,55)(2,56)(3,53)(4,54)(5,37)(6,38)(7,39)(8,40)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,26)(22,27)(23,28)(24,25)(29,58)(30,59)(31,60)(32,57)(33,64)(34,61)(35,62)(36,63), (1,12)(2,9)(3,10)(4,11)(5,28)(6,25)(7,26)(8,27)(13,31)(14,32)(15,29)(16,30)(17,35)(18,36)(19,33)(20,34)(21,39)(22,40)(23,37)(24,38)(41,54)(42,55)(43,56)(44,53)(45,60)(46,57)(47,58)(48,59)(49,62)(50,63)(51,64)(52,61), (1,44)(2,41)(3,42)(4,43)(5,21)(6,22)(7,23)(8,24)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,64)(18,61)(19,62)(20,63)(25,40)(26,37)(27,38)(28,39)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,50,42,36)(2,19,43,64)(3,52,44,34)(4,17,41,62)(5,58,23,15)(6,30,24,48)(7,60,21,13)(8,32,22,46)(9,33,56,51)(10,61,53,20)(11,35,54,49)(12,63,55,18)(14,40,57,27)(16,38,59,25)(26,45,39,31)(28,47,37,29), (1,45,42,31)(2,32,43,46)(3,47,44,29)(4,30,41,48)(5,34,23,52)(6,49,24,35)(7,36,21,50)(8,51,22,33)(9,14,56,57)(10,58,53,15)(11,16,54,59)(12,60,55,13)(17,25,62,38)(18,39,63,26)(19,27,64,40)(20,37,61,28)>;
G:=Group( (2,9)(4,11)(5,21)(6,40)(7,23)(8,38)(14,32)(16,30)(17,51)(18,61)(19,49)(20,63)(22,25)(24,27)(26,37)(28,39)(33,62)(34,50)(35,64)(36,52)(41,54)(43,56)(46,57)(48,59), (1,55)(2,56)(3,53)(4,54)(5,37)(6,38)(7,39)(8,40)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,26)(22,27)(23,28)(24,25)(29,58)(30,59)(31,60)(32,57)(33,64)(34,61)(35,62)(36,63), (1,12)(2,9)(3,10)(4,11)(5,28)(6,25)(7,26)(8,27)(13,31)(14,32)(15,29)(16,30)(17,35)(18,36)(19,33)(20,34)(21,39)(22,40)(23,37)(24,38)(41,54)(42,55)(43,56)(44,53)(45,60)(46,57)(47,58)(48,59)(49,62)(50,63)(51,64)(52,61), (1,44)(2,41)(3,42)(4,43)(5,21)(6,22)(7,23)(8,24)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(17,64)(18,61)(19,62)(20,63)(25,40)(26,37)(27,38)(28,39)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,50,42,36)(2,19,43,64)(3,52,44,34)(4,17,41,62)(5,58,23,15)(6,30,24,48)(7,60,21,13)(8,32,22,46)(9,33,56,51)(10,61,53,20)(11,35,54,49)(12,63,55,18)(14,40,57,27)(16,38,59,25)(26,45,39,31)(28,47,37,29), (1,45,42,31)(2,32,43,46)(3,47,44,29)(4,30,41,48)(5,34,23,52)(6,49,24,35)(7,36,21,50)(8,51,22,33)(9,14,56,57)(10,58,53,15)(11,16,54,59)(12,60,55,13)(17,25,62,38)(18,39,63,26)(19,27,64,40)(20,37,61,28) );
G=PermutationGroup([(2,9),(4,11),(5,21),(6,40),(7,23),(8,38),(14,32),(16,30),(17,51),(18,61),(19,49),(20,63),(22,25),(24,27),(26,37),(28,39),(33,62),(34,50),(35,64),(36,52),(41,54),(43,56),(46,57),(48,59)], [(1,55),(2,56),(3,53),(4,54),(5,37),(6,38),(7,39),(8,40),(9,43),(10,44),(11,41),(12,42),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,26),(22,27),(23,28),(24,25),(29,58),(30,59),(31,60),(32,57),(33,64),(34,61),(35,62),(36,63)], [(1,12),(2,9),(3,10),(4,11),(5,28),(6,25),(7,26),(8,27),(13,31),(14,32),(15,29),(16,30),(17,35),(18,36),(19,33),(20,34),(21,39),(22,40),(23,37),(24,38),(41,54),(42,55),(43,56),(44,53),(45,60),(46,57),(47,58),(48,59),(49,62),(50,63),(51,64),(52,61)], [(1,44),(2,41),(3,42),(4,43),(5,21),(6,22),(7,23),(8,24),(9,54),(10,55),(11,56),(12,53),(13,58),(14,59),(15,60),(16,57),(17,64),(18,61),(19,62),(20,63),(25,40),(26,37),(27,38),(28,39),(29,45),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,50,42,36),(2,19,43,64),(3,52,44,34),(4,17,41,62),(5,58,23,15),(6,30,24,48),(7,60,21,13),(8,32,22,46),(9,33,56,51),(10,61,53,20),(11,35,54,49),(12,63,55,18),(14,40,57,27),(16,38,59,25),(26,45,39,31),(28,47,37,29)], [(1,45,42,31),(2,32,43,46),(3,47,44,29),(4,30,41,48),(5,34,23,52),(6,49,24,35),(7,36,21,50),(8,51,22,33),(9,14,56,57),(10,58,53,15),(11,16,54,59),(12,60,55,13),(17,25,62,38),(18,39,63,26),(19,27,64,40),(20,37,61,28)])
Matrix representation ►G ⊆ GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 4 |
0 | 0 | 0 | 0 | 0 | 3 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 3 |
0 | 0 | 0 | 0 | 1 | 1 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,4,3],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,1,0,0,0,0,3,1],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,3,0,0,0,0,0,3] >;
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4P | 4Q | ··· | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | C4○D4 | 2+ (1+4) | 2- (1+4) |
kernel | C24.453C23 | C23.7Q8 | C23.8Q8 | C23.63C23 | C24.C22 | C23.65C23 | C23.67C23 | C23⋊Q8 | C23.78C23 | C23.Q8 | C23.81C23 | C23.83C23 | C22⋊C4 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 8 | 3 | 1 |
In GAP, Magma, Sage, TeX
C_2^4._{453}C_2^3
% in TeX
G:=Group("C2^4.453C2^3");
// GroupNames label
G:=SmallGroup(128,1520);
// by ID
G=gap.SmallGroup(128,1520);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,344,758,723,1571,346,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b*c*d,f^2=g^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,f*a*f^-1=a*d=d*a,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=b*c*e>;
// generators/relations